Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shao-Wen Chen, Han-Dong Yin* and Da-Qi Wang

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059,
People's Republic of China

Correspondence e-mail:
handongyin@Ictu.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.011 \AA$
R factor $=0.059$
$w R$ factor $=0.163$
Data-to-parameter ratio $=14.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Dimethyl(2-oxido-1-naphthaldehyde isonicotinoylhydrazonato)tin(IV) methanol solvate

In the molecular structure of the title complex, $\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}\right)\right] \cdot \mathrm{CH}_{3} \mathrm{OH}$, the Sn atom is in a distorted trigonalbipyramidal coodination, with $\mathrm{Sn}-\mathrm{O}$ distances of 2.099 (6) and 2.128 (6) \AA. A methanol solvent molecule is $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonded to the complex molecule.

Comment

The molecular structure of the title mononuclear complex, (I), is shown in Fig. 1. The Sn atom is five-coordinated by two O atoms, two C atoms and one N atom in a disorted trigonalbipyramidal coodination. The Schiff base ligand acts as a tridentate ligand via the azomethine N atom and two O atoms. The $\mathrm{C} 11-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 12$ sequence of atoms shows π-electron delocalization, as evidenced by the values for the bond lengths (Table 1). The $\mathrm{Sn}-\mathrm{O}$ and $\mathrm{Sn}-\mathrm{C}$ bond lengths are all equivalent within experimental error. The methanol solvent molecule is $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonded to the complex molecule through the pyridyl N atom (Table 2 and Fig. 2).

(I)

Experimental

The reaction was carried out under a nitrogen atmosphere using standard Schlenk techniques. The Schiff base ligand 2-hydroxy-1naphthaldehyde isonicotinylhydrazone ($0.1165 \mathrm{~g}, 0.4 \mathrm{mmol}$) was added to a mixture of methanol and benzene ($1: 3 \mathrm{v} / \mathrm{v}, 30 \mathrm{ml}$) with sodium ethoxide ($0.272 \mathrm{~g}, 0.4 \mathrm{mmol}$). The mixture was stirred for $30 \mathrm{~min},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnCl}_{2}(0.088 \mathrm{~g}, 0.4 \mathrm{mmol})$ was added, and stirring continued for 10 h under reflux. After cooling to room temperature, filtration and evaporation to dryness, the solid was then recrystallized from dichloromethane-methanol (3:1 v/v; m.p. 498-499 K). Analysis calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Sn}$: C 51.09, H 4.50, N 8.94%; found: C 50.91, N 4.43, N 8.81\%.

Crystal data

$\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}\right)\right] \cdot \mathrm{CH}_{4} \mathrm{O}$	$D_{x}=1.576 \mathrm{Mg} \mathrm{m}$
$M_{r}=470.09$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{1} / c$	Cell parameters from 3830
$a=10.969(2) \AA$	reflections
$b=7.208(2) \AA$	$\theta=4.4-25.7^{\circ}$
$c=25.269(3) \AA$	$\mu=1.32 \mathrm{~mm}^{-1}$
$\beta=97.557(3)^{\circ}$	$T=298(2) \mathrm{K}$
$V=1980.7(7) \AA^{3}$	Block, orange
$Z=4$	$0.35 \times 0.22 \times 0.19 \mathrm{~mm}$
Data collection	
Bruker SMART CCD area-detector	3481 independent reflections
\quad diffractometer	2647 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.076$
Absorption correction: multi-scan	$\theta_{\text {max }}=25.0^{\circ}$
$\quad(S A D A B S ;$ Sheldrick, 1996)	$h=-13 \rightarrow 13$
$T_{\text {min }}=0.656, T_{\text {max }}=0.788$	$k=-8 \rightarrow 7$
7804 measured reflections	$l=-30 \rightarrow 14$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.163$
$S=1.00$
3481 reflections
244 parameters
$D_{x}=1.576 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3830

- $4.425 .7^{\circ}$
$\mu=1.32 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, orange
$0.35 \times 0.22 \times 0.19 \mathrm{~mm}$

3481 independent reflections
2647 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.076$
$h=-13 \rightarrow 13$
$k=-8 \rightarrow 7$
$l=-30 \rightarrow 14$

H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.102 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$ 。
$\Delta \rho_{\max }=1.73 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-1.35 \mathrm{e}_{\AA^{-3}}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Sn} 1-\mathrm{C} 18$	$2.083(8)$	$\mathrm{Sn} 1-\mathrm{N} 1$	$2.202(6)$
$\mathrm{Sn} 1-\mathrm{O} 1$	$2.099(6)$	$\mathrm{N} 1-\mathrm{C} 11$	$1.294(8)$
$\mathrm{Sn} 1-\mathrm{C} 19$	$2.123(8)$	$\mathrm{N} 2-\mathrm{C} 12$	$1.305(9)$
$\mathrm{Sn} 1-\mathrm{O} 2$	$2.128(6)$		
$\mathrm{C} 18-\mathrm{Sn} 1-\mathrm{O} 1$	$96.8(3)$	$\mathrm{C} 19-\mathrm{Sn} 1-\mathrm{O} 2$	$94.5(3)$
$\mathrm{C} 18-\mathrm{Sn} 1-\mathrm{C} 19$	$134.9(3)$	$\mathrm{C} 18-\mathrm{Sn} 1-\mathrm{N} 1$	$108.9(3)$
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{C} 19$	$93.0(3)$	$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{N} 1$	$80.8(2)$
$\mathrm{C} 18-\mathrm{Sn} 1-\mathrm{O} 2$	$95.7(3)$	$\mathrm{C} 19-\mathrm{Sn} 1-\mathrm{N} 1$	$116.1(3)$
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{O} 2$	$153.54(19)$	$\mathrm{O} 2-\mathrm{Sn} 1-\mathrm{N} 1$	$73.1(2)$

Table 2
Hydrogen-bond geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H3 $\cdots \mathrm{N}^{\mathrm{i}}$	0.82	2.33	$2.787(10)$	116

Symmetry code: (i) $x+1, y, z$.
All H atoms were positioned geometrically and refined as riding on their parent atoms, with aromatic $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$, and methyl C-H distances of $0.96 \AA$. The $U_{\text {iso }}(\mathrm{H})$ values were set at $1.5 U_{\text {eq }}(\mathrm{C})$ for the methyl H atoms and at $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for the other C bound H atoms. The largest peak in the final difference map is located $0.97 \AA$ from atom Sn 1 and the deepest hole $0.91 \AA$ from atom Sn 1 .

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine

Figure 1
The molecular structure (I), showing 30% probability displacement ellipsoids.

Figure 2
The packing of the title complex, showing hydrogen bonds as dashed lines.
structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

We acknowledge the financial support of the Shandong Province Science Foundation and the State Key Laboratory of Crystalline Materials, Shandong University, China.

References

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

